23 research outputs found

    Extension-Based Proofs for Synchronous Message Passing

    Get PDF
    There is no wait-free algorithm that solves k-set agreement among n ? k+1 processes in asynchronous systems where processes communicate using only registers. However, proofs of this result for k ? 2 are complicated and involve topological reasoning. To explain why such sophisticated arguments are necessary, Alistarh, Aspnes, Ellen, Gelashvili, and Zhu recently introduced extension-based proofs, which generalize valency arguments, and proved that there are no extension-based proofs of this result. In the synchronous message passing model, k-set agreement is solvable, but there is a lower bound of t rounds for any k-set agreement algorithm among n > kt processes when at most k processes can crash each round. The proof of this result for k ? 2 is also a complicated topological argument. We define a notion of extension-based proofs for this model and we show there are no extension-based proofs that t rounds are necessary for any k-set agreement algorithm among n = kt+1 processes, for k ? 2 and t > 2, when at most k processes can crash each round. In particular, our result shows that no valency argument can prove this lower bound

    MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask

    Full text link
    Feature warping is a core technique in optical flow estimation; however, the ambiguity caused by occluded areas during warping is a major problem that remains unsolved. In this paper, we propose an asymmetric occlusion-aware feature matching module, which can learn a rough occlusion mask that filters useless (occluded) areas immediately after feature warping without any explicit supervision. The proposed module can be easily integrated into end-to-end network architectures and enjoys performance gains while introducing negligible computational cost. The learned occlusion mask can be further fed into a subsequent network cascade with dual feature pyramids with which we achieve state-of-the-art performance. At the time of submission, our method, called MaskFlownet, surpasses all published optical flow methods on the MPI Sintel, KITTI 2012 and 2015 benchmarks. Code is available at https://github.com/microsoft/MaskFlownet.Comment: CVPR 2020 (Oral

    A Framework for Designing Fair Ubiquitous Computing Systems

    Full text link
    Over the past few decades, ubiquitous sensors and systems have been an integral part of humans' everyday life. They augment human capabilities and provide personalized experiences across diverse contexts such as healthcare, education, and transportation. However, the widespread adoption of ubiquitous computing has also brought forth concerns regarding fairness and equitable treatment. As these systems can make automated decisions that impact individuals, it is essential to ensure that they do not perpetuate biases or discriminate against specific groups. While fairness in ubiquitous computing has been an acknowledged concern since the 1990s, it remains understudied within the field. To bridge this gap, we propose a framework that incorporates fairness considerations into system design, including prioritizing stakeholder perspectives, inclusive data collection, fairness-aware algorithms, appropriate evaluation criteria, enhancing human engagement while addressing privacy concerns, and interactive improvement and regular monitoring. Our framework aims to guide the development of fair and unbiased ubiquitous computing systems, ensuring equal treatment and positive societal impact.Comment: 8 pages, 1 figure, published in 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computin

    Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization

    Full text link
    While large language models (LLMs) already achieve strong performance on standard generic summarization benchmarks, their performance on more complex summarization task settings is less studied. Therefore, we benchmark LLMs on instruction controllable text summarization, where the model input consists of both a source article and a natural language requirement for the desired summary characteristics. To this end, we curate an evaluation-only dataset for this task setting and conduct human evaluation on 5 LLM-based summarization systems. We then benchmark LLM-based automatic evaluation for this task with 4 different evaluation protocols and 11 LLMs, resulting in 40 evaluation methods in total. Our study reveals that instruction controllable text summarization remains a challenging task for LLMs, since (1) all LLMs evaluated still make factual and other types of errors in their summaries; (2) all LLM-based evaluation methods cannot achieve a strong alignment with human annotators when judging the quality of candidate summaries; (3) different LLMs show large performance gaps in summary generation and evaluation. We make our collected benchmark, InstruSum, publicly available to facilitate future research in this direction.Comment: GitHub Repo: https://github.com/yale-nlp/InstruSu

    Regulation Mechanism of Processed Cheese Stretchability

    Get PDF
    In this work, the regulation mechanism of processed cheese stretchability was studied by adjusting the amount of added emulsifying salt (0.6%–3.0%) and potato acetate starch (0.125%–2%) and pH (5.4–5.8). The results showed that as the emulsifying salt increased from 0.6% to 3.0%, the content of bound calcium in processed cheese decreased from (4.42 ± 0.05) to (0.02 ± 0.04) g/kg, the average fat globule size D(4,3) decreased from (73.08 ± 3.16) to (27.90 ± 2.55) μm, and the bound water content increased from (9.57 ± 0.25)% to (10.40 ± 0.25)%, indicating that the calcium crosslinking effect gradually decreased, the emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese initially increased and then decreased. As pH increased from 5.4 to 5.8, the content of bound calcium increased from (2.01 ± 0.08) to (2.74 ± 0.05) g/kg, and the average fat globule size D(4,3) decreased from (36.36 ± 2.68) to (21.37 ± 2.39) μm. Fourier transform infrared spectroscopy showed that the bending vibration absorption peaks of O–H and N–H moved to lower wavenumbers, and the bound water content increased from (9.85 ± 0.16)% to (10.74 ± 0.12)%, indicating that the calcium crosslinking effect, emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese increased first and then decreased. As potato acetate starch concentration increased from 0.125% to 2%, the average fat globule size D(4,3) decreased from (54.17 ± 2.74) to (29.92 ± 2.71) μm, and the bound water content increased from (9.90 ± 0.38)% to (11.00 ± 0.21)%, indicating that the emulsifying effect and hydration degree increased, and the stretchability increased first and then decreased. At a potato acetate starch concentration of 2%, starch and protein were separated, so the stretchability became worse. In conclusion, the stretchability of processed cheese is comprehensively regulated by the degree of calcium ion chelation, emulsifying effect, electrostatic interaction between protein molecules, water distribution state and protein-polysaccharide phase behavior

    Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS<sub>2</sub> on Fused Silica

    No full text
    Monolayer MoS<sub>2</sub>, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS<sub>2</sub> on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS<sub>2</sub> flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO<sub>2</sub>–Si, mica, sapphire, h-BN, and SrTiO<sub>3</sub>, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS<sub>2</sub> on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS<sub>2</sub> on fused silica and SiO<sub>2</sub>–Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS<sub>2</sub> grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS<sub>2</sub> grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS<sub>2</sub> grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc
    corecore